Modeling spiking neural networks

نویسندگان

  • Ioannis D. Zaharakis
  • Achilles Kameas
چکیده

A notation for the functional specification of a wide range of neural networks consisting of temporal or non-temporal neurons, is proposed. The notation is primarily a mathematical framework, but it can also be illustrated graphically and can be extended into a language in order to be automated. Its basic building blocks are processing entities, finer grained than neurons, connected by instant links, and as such they form sets of interacting entities resulting in bigger and more sophisticated structures. The hierarchical nature of the notation supports both top-down and bottom-up specification approaches. The use of the notation is evaluated by a detailed example of an integrated tangible agent consisting of sensors, a computational part, and actuators. A process from specification to both software and hardware implementation is proposed. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matlab Model for Spiking Neural Networks

Spiking Neural Networks are the most realistic model compared to its biological counterpart. This paper introduces a MATLAB toolbox that is specifically designed for simulating spiking neural networks. The toolbox includes a set of functions that are useful for: creating and organizing the desired architecture; updating stimuli signals, adapting synapses and simulating the network; extracting a...

متن کامل

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Modeling with Spiking Neural Networks

This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific applicat...

متن کامل

DEVS Simulation of Spiking Neural Networks

This paper presents a new model for simulating Spiking Neural Networks using discrete event simulation which might possibly offer advantages concerning simulation speed and scalability. Spiking Neural Networks are considered as a new computation paradigm, representing an enhancement of Artificial Neural Networks by offering more flexibility and degree of freedom for modeling computational eleme...

متن کامل

Evolving Spiking Neural Networks in the GReaNs (Gene Regulatory evolving artificial Networks) Plaftorm

GReaNs (which stands for Genetic Regulatory evolving artificial Networks) is an artificial life software platform that has previously been used for modeling of evolution of gene regulatory networks able to process signals, control animats and direct multicellular development in two and three dimensions. The structure of the network in GReaNs is encoded in a linear genome, without imposing any r...

متن کامل

Evolving Probabilistic Spiking Neural Networks for Spatio-temporal Pattern Recognition: A Preliminary Study on Moving Object Recognition

This paper proposes a novel architecture for continuous spatio-temporal data modeling and pattern recognition utilizing evolving probabilistic spiking neural network ’reservoirs’ (epSNNr). The paper demonstrates on a simple experimental data for moving object recognition that: (1) The epSNNr approach is more accurate and flexible than using standard SNN; (2) The use of probabilistic neuronal mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 395  شماره 

صفحات  -

تاریخ انتشار 2008